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Abstract

Purpose – The purpose of this paper is to present a new eddy-viscosity formulation designed to
exhibit a correct response to streamline curvature and flow rotation. The formulation is implemented
into a linear k-1 turbulence model with a two-layer near-wall treatment in a commercial
computational fluid dynamics (CFD) solver.
Design/methodology/approach – A simple, robust formula is developed for the eddy-viscosity
that is curvature/rotation sensitive and also satisfies realizability and invariance principles. The new
model is tested on several two- and three-dimensional problems, including rotating channel flow,
U-bend flow and internally cooled turbine airfoil conjugate heat transfer. Predictions are compared to
those with popular eddy-viscosity models.
Findings – Converged solutions to a variety of turbulent flow problems are obtained with no
additional computational expense over existing two-equation models. In all cases, results with the
new model are superior to two other popular k-1 model variants, especially for regions in which rapid
rotation or strong streamline curvature exists.
Research limitations/implications – The approach adopted here for linear eddy-viscosity models
may be extended in a straightforward manner to non-linear eddy-viscosity or explicit algebraic stress
models.
Practical implications – The new model is a simple ‘‘plug-in’’ formula that contains important
physics not included in most linear eddy-viscosity models and is easy to implement in most flow
solvers.
Originality/value – The present model for curved and rotating flows is developed without the need
for second derivatives of velocity in the formulation, which are known to present difficulties with
unstructured meshes.
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Nomenclature

Cf skin friction coefficient

Cm eddy-viscosity coefficient

cp specific heat [ J/kg K]

H channel height [m]

hc convective heat transfer
coefficient [W/m2 K]

k turbulent kinetic energy ¼
1

2
uiui [m2/s2]

L characteristic length, total
surface arc length [m]

n normal distance to surface or
boundary [m]

P k production of turbulent kinetic
energy
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Pr Prandtl number

ReH, Rec Reynolds number

Rey turbulent Reynolds number for
near-wall turbulence model ¼ffiffiffi

k
p
�y

n

Ret turbulent Reynolds number for

wall-bounded flow ¼ u � h
n

Ro rotation number ¼ vmH
Um

s distance along vane surface
from leading edge [m]

S strain-rate magnitude ¼ffiffiffiffiffiffiffiffiffiffiffiffi
2SijSij

p
Sij rate-of-strain tensor ¼

1
2

@Ui
@xj
þ @Uj

@xi

� �
[s�1]

St Stanton number ¼ hc
rcpUref

t time [s]

t* normalized time, S � t
T temperature [K]

TL turbulence level ¼
100 �

ffiffiffiffiffiffiffiffiffiffi
2k=3

p
=U1 [percent]

u, v, w velocity components in the x, y,
and z directions, respectively
[m/s]

U mean velocity component
(with i, j, k indices), velocity
magnitude [m/s]

Uþ normalized velocity in
boundary layer ¼ U/u*

u* wall friction velocity ¼ffiffiffiffiffiffiffiffiffiffi
�w=�

p
[m/s]

v velocity scale [m/s]

W modified flow rotation-rate
magnitude ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2WijWij

p
[s�1]

Wij modified flow rotation-rate
tensor [s�1]

x, y, z cartesian coordinate directions

yþ non-dimensional wall distance
in turbulent boundary layer

1 dissipation rate of turbulent
kinetic energy [m2/s3]

k von Karman constant

m dynamic viscosity [N s/m2]

mT turbulent (eddy) viscosity
[N s/m2]

n kinematic viscosity [m2/s]

r density [kg/m3]

u dimensionless temperature ¼
(T � Tc)/(T0 � Tc), angle in
U-bend

tw wall shear stress [N/m2]

v specific dissipation rate of
turbulence [s�1]

vm angular velocity of reference
frame relative to inertial
frame [s�1]

� rotation-rate
magnitude ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2�ij�ij

p
[s�1]

�ij rotation-rate tensor in inertial

frame ¼ 1
2
@Ui
@xj
�@Uj

@xi

� �
[s�1]

�’ij rotation-rate tensor in
rotating frame [s�1]

Subscripts

c coolant air total (stagnation)
condition, based on airfoil
chord length

i, j, k indices used in tensor notation

LE at airfoil leading edge plane

m mean value over channel
cross-section

PS vane pressure surface

ref condition at reference location

SS vane suction surface

T turbulent

TE at airfoil trailing edge plane

w from wall or condition at
surface

1 inlet or freestream condition

0 total (stagnation)
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Operators

~(overbar) instantaneous

–(overbar) ensemble or time average

eijk tensor permutation operator

�ij kronecker delta

Introduction
Computational fluid dynamics (CFD) has emerged as a recognized, predictive tool for
analysis of increasingly complicated fluid flow and heat transfer problems. In many
applications, CFD may greatly reduce product development time and cost, especially in
situations where several different design iterations are evaluated. For most engineering
problems, a CFD simulation based on solution of the Reynolds-averaged Navier–Stokes
equations is currently the most viable option considering accuracy and numerical cost.

As a consequence of Reynolds-averaging, the gradient of the turbulent stress tensor,
~��uiuj, appears in the momentum equations. A turbulence model is used to relate the
unknown turbulent stresses to known quantities, closing the system of equations. As
the fidelity of numerical simulation tools has increased, the quality of the numerical
predictions is often limited by the performance of the turbulence model. In many cases,
as assumptions are made to arrive at economic models, sensitivity to complex physical
mechanisms is reduced or eliminated. One such example is the sensitivity of many
models to streamline curvature and rotation.

Strong or even moderate curvature can significantly impact the turbulence field
(Bradshaw, 1973), which will in turn influence the mean flow development. Correct
response to curvature and/or rotational effects by the turbulence model is therefore
critical. From a design point-of-view, the quality of predictions of wall shear stress or
heat transfer coefficient on curved surfaces may be significantly influenced by the
model’s response, or lack thereof, to curvature or rotation. For example, it is well
documented in the literature that convex curvature is stabilizing and suppresses
turbulence levels, while concave curvature is destabilizing and tends to augment
turbulence (Muck et al., 1985; Hoffman et al., 1985).

Differential Reynolds-stress turbulence models solve a transport equation for the six
unique turbulent stress components, and they naturally contain sensitivity to
streamline curvature and reference frame rotation through the exact form of the
production terms (Speziale and Mac Giolla Mhuiris, 1989). Yet models of this class are
computationally expensive, and their equations tend to be numerically stiff, traits that
make them non-ideal for a design environment (Pettersson Reif et al., 1999). To date, the
‘‘workhorse’’ models in industry are the eddy-viscosity class of models, which follow
the Boussinesq assumption relating the turbulent stress components to the mean strain
rate via a turbulent- or eddy-viscosity. Popular models in this class are the k-1 and k-v
models, which represent a reasonable compromise between expense and physical
realism in many flows. However, the ‘‘standard’’ k-1 model (Launder and Spalding,
1972) and k-v model (Wilcox, 1988), as well as most variants, lack any explicit
sensitivity to streamline curvature and/or reference frame rotation. This can lead to
significant error in computational predictions in many flow situations.

For more than three decades researchers have attempted to incorporate rotation and
curvature corrections into linear eddy-viscosity models (Launder et al., 1977; Howard
et al., 1980; Leschziner and Rodi, 1981; Gooray et al., 1985; Park and Chung, 1989).
These attempts were shown to successfully improve prediction in the flows for which
they were tested, however they were based on ad hoc modifications and, more
importantly, did not typically satisfy mathematical invariance principles.
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As an extension of Boussinesq-based models, both algebraic stress models and so-
called non-linear eddy-viscosity models have been developed. Some authors have
reported an improvement over linear models in their ability to resolve curvature effects,
even when no explicit sensitization to flow rotation and/or curvature has been
incorporated (Iacovides et al., 1996; Song et al., 2001; Yang and Ma, 2003). In addition,
some forms of these models have been explicitly sensitized to rotation and curvature,
resulting in further improvement to their predictive capability (Girimaji, 1997; Rumsey
and Gatski, 2001; Fu and Qian, 2002; Wallin and Johansson, 2002; Hellsten, 2002;
Grundestam et al., 2005; Wang and Thangam, 2006). Significantly, the curvature
corrections in these recent models have been based primarily on mathematically
consistent application of invariance and frame indifference principles, in contrast to the
ad hoc modifications found in earlier attempts.

There have been far fewer documented efforts to appropriately sensitize linear eddy-
viscosity models to the effects of rotation and curvature. Two notable exceptions are
the development of curvature-corrected versions of the model by Spalart and Allmaras
(1992) and the v2-f model by Durbin (1991). Spalart and Shur (1997) introduced an
invariant-based curvature correction to the former, which was subsequently shown to
yield improved results over the original model for several test cases (Shur et al., 2000).
Similarly, Pettersson Reif et al. (1999) demonstrated improved predictive capability of a
curvature-corrected v2-f model.

This paper presents the development of a new formulation for the eddy viscosity
intended for use in the general class of two-equation turbulence models, as a simple
modification that incorporates rotation and curvature effects. Specifically, the eddy-
viscosity coefficient Cm is formulated to reproduce the proper response to streamline
curvature and/or reference frame rotation, yielding a curvature-corrected linear eddy-
viscosity model, in contrast to the non-linear model forms that have recently been
proposed. The new formulation may be easily implemented into existing flow solvers
that incorporate RANS-based eddy-viscosity turbulence models. The new form of the
eddy viscosity is Galilean invariant, frame indifferent and satisfies the realizability
constraint on the Reynolds-stress tensor. As used in this paper, Galilean invariance
refers to the property that a model yields identical results when cast into any inertial
reference frame. Frame indifference refers to the property that a model yields identical
results when cast into either an inertial or non-inertial (rotating) reference frame. It is
possible, of course, to develop models that satisfy one of these conditions without
satisfying the other. The new model avoids the use of second derivatives of the velocity
field in defining the local flow rotation by adopting a simpler approximation to rotation
based only on local strain and rotation-rate magnitude. The importance of the flow
rotation, as distinct from vorticity or reference frame rotation, is discussed, and the
analogy between curved flows and rotating flows is highlighted.

The new eddy-viscosity formula has been implemented into a two-layer k-1 model
for purposes of demonstration and validation. The model solves equations for turbulent
kinetic energy (k) and dissipation rate (1) in the far-field, while solving only the
k equation near the wall and prescribing a length scale based on wall distance.
The interface between the near-wall region and the far-field is evaluated based on the
smaller of the two length scales determined by either the wall distance or
the dissipation rate.

In the current work, the new model form is tested on several problems where
curvature or rotation is an important mechanism influencing the Reynolds stress and
mean flow. These include rotating homogenous shear flow, rotating fully developed
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channel flow and two-dimensional flow in a U-bend. Numerical predictions are
compared to experimental data and direct numerical simulations (DNSs) or large eddy
simulations in terms of mean flow and turbulence development. Finally, to demonstrate
the model in a realistic design application, the new model is employed in a conjugate
heat transfer simulation of an internally cooled gas turbine vane. Since the vane
external surfaces are highly curved in some regions, this complex simulation should
benefit from a turbulence model with curvature sensitivity, allowing more accurate
prediction of external heat transfer coefficient.

Model development
This section describes the procedure and assumptions in the development of the new
eddy-viscosity formulation. The model is designed to include the effects of streamline
curvature on the turbulence structure, and, by analogy, also reproduce the effects of
system rotation. As stated earlier, the approach is based on the Boussinesq
approximation, which has the advantages of linearity with respect to the mean strain
tensor, tensor invariance and reference frame indifference (when the eddy-viscosity
definition is also frame indifferent). Additionally, this approach is simple to implement
into existing models and generally stable during the solution process for nearly all
problems.

As a starting point, we consider the Reynolds-stress tensor decomposed as

uiuj ¼ bij þ
2

3
dij

� �
k; ð1Þ

where bij is the anisotropy tensor, whose components indicate the magnitude of
departure from isotropic turbulence, and k is the turbulent kinetic energy. For the class
of models considered here, k is determined from the solution of a model transport
equation. The anisotropy tensor is determined from the mean strain rate using the
Boussinesq hypothesis:

bij ¼ �
mT

rk

@Ui

@xj

þ @Uj

@xi

� �
þ 2

3

mT

�k

@Uk

@xk

� �
dij: ð2Þ

The eddy viscosity, mT, incorporates additional physical effects, such as wall damping
or, relevant to the current work, curvature and rotation. The general expression for the
eddy viscosity is:

mT ¼ fmCmr
ffiffiffi
k
p
‘T : ð3Þ

The turbulent length scale is determined for the k-1 model as ‘T � k3=2=1, for the k-v
model as ‘T � k1=2=v, and for the algebraic near-wall model of Wolfstein (1969)
adopted here as ‘T � CL y, where y is the distance to the nearest wall. The damping
function fm incorporates the effects of near-wall viscous damping and is specific to the
particular model variant. Following convention, the term ‘‘linear eddy-viscosity’’ is
used to describe the current model since Equation (2) indicates that the anisotropy
tensor is proportional to the strain-rate tensor, in contrast to non-linear models for
which the anisotropy tensor includes higher-order constructions of Sij and/or �ij. Note,
however, that the scalar proportionality coefficient (i.e. the eddy viscosity) may include
scalar invariants of the strain and rotation-rate tensors in its computation. ‘‘Linear
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eddy-viscosity’’ also indicates that the current model will yield isotropic normal
Reynolds-stress components in two-dimensional shear flow.

Gatski and Speziale (1993) presented an explicit algebraic stress model for bij based
on a modified form of the differential Reynolds-stress model of Speziale et al. (1991) and
the assumption of local structural equilibrium, also referred to as weak equilibrium.
The result is:

bij ¼

4

3
� C2

� �
C3 � 2ð Þ �

6

3� 2h2 þ 6z2
� S�ij þ S�ikW

�
kj þ S�jkW

�
ki

� �
� 2 S�ikS

�
kj �

1

3
S�klS

�
kl�ij

� �� �
;

ð4Þ

where

h2 ¼ S�ijS
�
ij; ð5Þ

z2 ¼W �
ij W

�
ij ; ð6Þ

S�ij ¼
1

2
g

k

1
2� C3ð ÞSij; ð7Þ

W �
ij ¼

1

2
g

k

1
2� C4ð ÞWij; ð8Þ

Wij ¼ �0ij þ
C4 � 4ð Þ
C4 � 2ð Þ emjivm; ð9Þ

g ¼ 1

2
C1 þ

Pk

1
� 1

� ��1

: ð10Þ

Note that Sij and �0ij represent the strain rate and the rotation rate expressed in a
reference frame rotating with angular velocity vm:

Sij ¼
1

2

@Ui

@xj

þ @Uj

@xi

� �
; ð11Þ

�0ij ¼
1

2

@Ui

@xj

� @Uj

@xi

� �
: ð12Þ

The constants C1–C4 are directly related to the constants appearing in the model terms of
the original differential Reynolds-stress model. Gatski and Speziale (1993) derived an
explicit formulation by assuming that the production-to-dissipation ratio that appears in
Equation (10) can be accurately represented using a constant value, equal to a universal
value for shear driven homogeneous turbulence at structural equilibrium. In addition, ad
hoc regularization procedures (Gatski and Speziale, 1993; Abid et al., 1996) have been
incorporated to eliminate the singularity arising in Equation (4) for large values of h.

Equation (4) may be utilized in its given form to derive a semi-implicit expression
for the eddy-viscosity coefficient C�. The development is straightforward. First, the
expression is linearized with respect to the mean strain rate, and the definition of the
turbulent viscosity (Equations (2) and (3)), with fm assumed to be unity, is applied to
yield:
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Cm ¼
4� 3C2ð Þ

6� 4h2 þ 12z2
	 
 C1

2
� 1

� �
þ Pk

1

� � : ð13Þ

The production-to-dissipation ratio in the denominator of Equation (13) is expressed by
substitution of the following, strictly applicable for incompressible flow:

Pk

1
¼ mTS2

�1
¼ Cm

Sk

1

� �2

: ð14Þ

Furthermore, the parameter h2 can be expressed in terms of Sk/1, which is the ratio of
the strain-rate magnitude to the turbulent time scale. Similarly, z2 can be expressed in
terms of Wk/1, or the ratio of the modified rotation-rate magnitude to the turbulent
time scale. After some manipulation to eliminate negative terms on the right-hand-side
that could result in a singularity, the following is obtained:

Cm ¼
K1 þ K2Cm

Sk
1

� �2

þK3Cm
Sk
1

� �
þ K4C2

m
Sk
1

� �3

K5 þ K6Cm
Sk
1

� �2

þK7C2
m

Sk
1

� �4

þK8
Wk
1

� �2
: ð15Þ

While this result for Cm is not explicit, it is convergent, and may be computed through
successive iterations in conjunction with the iterative solution of the dependent variables
during the simulation. This is ideally suited for an implicit solver, but it may also be
employed in a time-resolved explicit solver by pre-converging Cm before beginning the
time step. A detailed derivation of Equations (13) and (15) is provided in the Appendix.

The influence of reference frame rotation rate, vm, on the eddy viscosity occurs via
the modified rotation-rate term (Equation (9)). However, two deficiencies with this form
are readily apparent. First, the model is clearly not frame indifferent, i.e. the scalar
value of Cm (and therefore mT) is arbitrarily dependent on vm, since the construction of
the modified rotation-rate magnitude, W, is not itself frame indifferent unless C4 !1.
Second, the model form does not contain any sensitivity to streamline curvature. These
related difficulties may be addressed via two separate considerations. First, the weak
equilibrium condition used to arrive at Equation (4) is redefined to correspond to weak
equilibrium in a reference frame rotating with the local flow rotation, rather than an
arbitrary (or inertial) reference frame. This approach has been adopted by several other
authors to yield algebraic Reynolds-stress models that provide improved results in
curved and rotating flows (Wallin and Johansson, 2002; Hellsten, 2002; Gatski and
Wallin, 2004; Grundestam et al., 2005). Second, the flow rotation rate is defined to
correspond to the material (i.e. Lagrangian) rate of rotation of the principal axes of the
mean strain-rate tensor, as viewed in an inertial frame of reference. This view of flow
rotation was initially proposed by Spalart and Shur (1997). It has the advantage of
being Galilean invariant, in contrast to previous models that adopted a definition
of flow rotation based on streamline curvature. Another Galilean-invariant definition of
flow rotation, proposed by Girimaji (1997), is the material rotation of the acceleration
vector. However, it was recently demonstrated that this formulation leads to
singularities in the definition of flow rotation and the strain-rate-based form has been
shown to be superior (Wallin and Johansson, 2002; Hellsten, 2002).
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Since the flow rotation rate, vm, depends on the rotation rate of the principal axes of
the mean strain-rate tensor, second spatial derivatives of velocity appear in this term
and enter the calculation of Cm via the rotational term Wij. This feature often creates
difficulty when used with a complex geometry requiring imperfect (i.e. skewed)
structured or unstructured meshes because the explicitly calculated second derivative
fields are ‘‘noisy’’ (not smooth), even for a fully converged solution. This is a common
trait of numerically approximated higher-order derivatives, and other researchers,
such as Shur et al. (2000), have discussed the difficulties with using second derivatives
in eddy-viscosity models. The present authors have found that it is difficult, if not
impossible, to achieve a sensible, converged solution with the above model form where
second derivatives appear in the calculation of the eddy viscosity. Unfortunately, it is
impossible to remove the higher-order derivatives in the formulation if the exact form
of the flow rotation rate is used.

In the eddy-viscosity formulation proposed here, the flow rotation rate is
approximated, rather than calculated exactly, in order to eliminate the second
derivatives in the calculation of Cm. It is assumed, for the purpose of approximating the
rotation term only, that the local flow conditions correspond to two-dimensional, simple
shear flow in a frame rotating with the flow. This turns out to be a reasonable
assumption for many engineering flows in which curvature and/or rotation effects are
important. In the inertial frame, the rotation-rate tensor in this case can be cast into the
simple two-dimensional form:

�ij ¼
0 S

�
2� vm

�S
�

2þ vm 0

� �
ð16Þ

where the strain-rate magnitude is equal to S in both the rotating and inertial frames
and vm is the flow rotation rate. The fluid rotation-rate magnitude is therefore
approximated as

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�ij�ij

p
¼ S � 2vm: ð17Þ

The above equation is locally solved for the frame rotation rate, vm, which in this case
is assumed to be equal to the flow rotation, i.e. the rotation rate of the principle axes of
the rate-of-strain tensor:

vm ¼
1

2
S � �ð Þ: ð18Þ

For the assumed condition of two-dimensional rotating shear flow, the frame rotation
rate may be found exactly with knowledge of the rotation-rate magnitude, �, and the
strain-rate magnitude, S, both computed in an inertial frame of reference. For the
general case of rotating or curved shear flow, Equation (18) represents an
approximation of the flow rotation rate. The modified rotation rate tensor Wij may then
be calculated in a straightforward manner (see the Appendix for details), and its
magnitude W, given below, substituted into the formulation for Cm.

W ¼ S � 1� C4 � 4

C4 � 2

� �
þ � � C4 � 4

C4 � 2

� �����
���� ¼ 9

4
�� 5

4
S

����
���� ð19Þ
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The eddy-viscosity formulation described by Equations (15) and (19) is Galilean
invariant and frame indifferent, since the eddy viscosity is constructed entirely as a
function of the invariant quantities S, �, k, and 1.

The remaining model development concerns the valuation of the constants K1

through K8 in Equation (15). The rotation-rate constant K8 was computed using the
coefficients in the differential Reynolds-stress model that was used as the starting point
for the derivation (Speziale et al., 1991). The remaining constants in Equation (2) were
determined by a least-squares best fit to the behavior of Cm in the realizable k-1 (RKE)
model of Shih et al. (1995) for the case of zero flow rotation. These constants are given
in the Appendix, along with the complete set of model equations. Figure 1 shows the
behavior of Cm as a function of Sk/1 for the zero flow rotation case, and its close
reproduction of the RKE behavior.

A two-layer type of near-wall treatment was included in the new turbulence model
to allow the integration of the flow to the wall. The model employs the one-equation
model of Wolfstein (1969) in the near-wall zone. The transport equation for turbulent
kinetic energy is solved within the wall-layer, while the dissipation rate is calculated
via an empirical correlation based on local wall distance. There is one new feature of
the present wall model, and that is a dynamic scale limiter to avoid the turbulent
Reynolds number cutoff (usuallyRey ¼

ffiffiffi
k
p
� y=� ¼ 200) commonly employed to

differentiate between near-wall and far-field (i.e. high-Re) zones. In the present model,
during each iteration, length scales are calculated at each cell based on the ‘‘high-
Reynolds number’’ model and the near-wall model, and the minimum of the two values
is used. This allows the size of the near-wall zone to simply adjust to the local flow
conditions, and it eliminates the need to define an ad hoc wall distance cutoff for the
two-layer model. To validate the near-wall model, simulations of fully developed
channel flow were conducted at several Reynolds numbers. The boundary layer profile
in wall units for Ret ¼ 395 is shown in Figure 2, and good agreement is observed with
data from the DNSs of Kim et al. (1987).

Figure 1.
Eddy-viscosity coefficient,
Cm, plotted as a function
of the mean-to-turbulent

time scale ratio, Sk/1, for
non-rotating shear flow
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Simulation details
The new curvature-sensitive eddy-viscosity model was implemented into fluent version
6.1.22 software via user-defined function (UDF) capability. For comparison, simulations
of the test cases were also conducted with the standard k-1 (SKE) model (Launder and
Spalding, 1972) and the RKE model (Shih et al., 1995), with two-layer near-wall modeling.
Simulations were run using the SIMPLE pressure-correction solver, and a second-order
upwind convective discretization scheme for all flow variables. For the turbine vane
conjugate heat transfer simulation, the Fourier equation for heat diffusion was solved in
the solid zone, and fluid–solid heat transfer coupling was accomplished by enforcing
conservation of the heat flux at the fluid–solid interface.

Convergence of all solutions was verified with the following strict criteria:

. residuals of the governing equations, normalized by their respective inlet fluxes,
fell below 0.1 percent;

. global mass and energy imbalances dropped below 0.01 percent; and

. the flow field was unchanging, based on observation of profiles of velocity,
pressure, temperature and turbulence quantities.

Additionally, solution-based grid adaption was used to refine the mesh and obtain a
new converged solution. This process was repeated until the solution was unchanging,
and grid-independence was declared.

The two-dimensional simulations (rotating channel and U-bend) were run on a
single processor of a SunBlade 2000 computer. The three-dimensional turbine vane
conjugate heat transfer case had a mesh of 6.7 million finite volumes, and these
simulations were run on 20 parallel processors of a Sun Enterprise 6500 machine. The
new turbulence model took no more than 5 percent more time per iteration than the
SKE and RKE models, and the number of iterations required for convergence was
approximately equal between all models.

Figure 2.
Prediction of velocity
profile in fully developed,
non-rotating channel flow
at Ret ¼ 395 using the
new turbulence model
with dynamic two-layer
near-wall treatment
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Test cases
This section discusses a series of test cases intended to gauge the performance of the
new model, both in an absolute sense by comparison of simulation results to data from
experiment or DNS, and in a relative sense through comparison with the standard k-1
and realizable k-1 model results. All of the cases exhibit flow development and/or heat
transfer that is strongly dependent on curvature or rotation. The first case is simple
rotating homogenous shear flow, in order to demonstrate the response of the model to
stabilizing or destabilizing rotation. The next two cases are two-dimensional problems –
fully developed flow in a rotating channel and channel ‘‘U-bend’’ flow. The fourth test
case is a conjugate heat transfer simulation of an internally cooled gas turbine vane.
This case is intended to highlight the effectiveness of the new model in a realistic
application problem that might be encountered in a design environment, as well as
model robustness for use with a complex problem requiring a large, unstructured grid.

Rotating homogeneous shear flow
Homogeneous shear flow is a well-studied and understood demonstration case for the
effect of rotation on turbulence production mechanisms. Figure 3 shows the temporal
evolution of turbulent kinetic energy for the non-rotating case (vm/S ¼ 0), indicating
good agreement between the new model and the reference LES results (Bardina et al.,
1983). In comparison, the standard k-1 model indicates a more energetic response, as
shown. Figure 4 shows the effect of stabilizing rotation (vm/S ¼ �0.5). Despite the
applied mean shear, the turbulent kinetic energy undergoes a monotonic decay. This
behavior is well predicted by the new model, while the SKE model, which is insensitive
to rotation and curvature, shows identical behavior as the zero-rotation case. Lastly,
Figure 5 shows the effect of destabilizing rotation (vm/S ¼ 0.25), which increases the
growth rate of turbulent kinetic energy relative to the zero rotation case. Boussinesq-
based models assume instantaneous response of the turbulence structure to changes in
mean strain rate, so the initial time lag between application of mean strain and

Figure 3.
Temporal growth of

turbulent kinetic energy
for non-rotating

homogeneous turbulence
in plane shear



HFF
19,6

756

turbulence growth apparent in the LES results is not reproduced by either of the eddy-
viscosity models. However, the new model shows an overall similar behavior to the
LES results, indicating that the new eddy-viscosity formulation yields the correct
response to both stabilizing and destabilizing rotation, as expected.

Rotating channel flow
The fairly simple test case of two-dimensional, fully developed rotating channel flow
isolates the effects of flow rotation on the wall-bounded turbulence field. A schematic of

Figure 4.
Temporal growth of
turbulent kinetic energy
for homogeneous
turbulence under plane
shear with stabilizing
rotation

Figure 5.
Temporal growth of
turbulent kinetic energy
for homogeneous
turbulence under plane
shear with destabilizing
rotation
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the problem setup is shown in Figure 6. In order to match the conditions of the DNS by
Kristoffersen and Andersson (1993), the Reynolds number based on the wall friction
velocity and the channel half height (H/2) was fixed at Ret ¼ 194. Simulations were

conducted for Rotation numbers Ro ¼vmH

Um
¼ 0 (non-rotating reference case),

Ro ¼ 0.05, and Ro ¼ 0.5. In addition to the new model, the standard k-1 model was
employed for comparison purposes.

Velocity profiles for the reference case with zero rotation are shown in Figure 7. The
new model shows excellent agreement with the symmetric DNS profile, slightly better
than the SKE model. This implies that the new near-wall treatment is physically
appropriate, since much of the channel lies in the near-wall (one-equation) zone at this
low Reynolds number. Because the flow is fully developed with no transverse component
of velocity, there is no effect of system rotation directly on the mean flow. In fact, laminar,
fully developed flow will maintain a symmetric profile regardless of any imposed
rotation. The turbulence is, however, affected by rotation, and any asymmetry in the
turbulence across the channel will result in skewness in the mean velocity profile.

Figure 6.
Diagram of rotating, fully

developed, turbulent
channel flow problem

Figure 7.
Velocity profiles for non-

rotating (Ro ¼ 0)
turbulent channel flow

reference case
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Figures 8 and 9 show the velocity and turbulent kinetic energy profiles, respectively,
for a mild rotation rate of Ro ¼ 0.05. The turbulent kinetic energy is normalized as

kþ ¼ k

u�2
. The DNS data show that the velocity and turbulent kinetic energy profiles

have become skewed due to the effects of rotation on the turbulence. The new model
correctly predicts the skewed velocity profile. The SKE model does not, which is not
surprising since the model has no sensitivity to the flow rotation. The new model
shows asymmetry in the turbulent kinetic energy, with reduced k near the suction

Figure 9.
Turbulent kinetic energy
profiles for rotating
channel flow with
Ro ¼ 0.05

Figure 8.
Velocity profiles for
channel flow at a mild
rotation rate of Ro ¼ 0.05
showing skewness
accurately predicted by
the new model
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surface ( y/H ¼ 0) and augmented k near the pressure surface ( y/H ¼ 1), although the
turbulence level here is slightly underpredicted.

As the rotation is increased to a relatively large level of Ro ¼ 0.5, the profiles for
velocity and turbulent kinetic energy, shown in Figures 10 and 11, display strong
asymmetry. The new model results show excellent agreement with the DNS velocity
profile. Qualitatively, the new model captures the skewness in the turbulent kinetic
energy profile, although k is underpredicted near the suction surface and slightly
overpredicted near the suction surface. For this case, it is again apparent that the SKE
is completely insensitive to rotation.

Figure 11.
Turbulent kinetic energy
profiles for channel flow

with rotation number
Ro ¼ 0.5

Figure 10.
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U-bend flow
The problem of flow in a U-bend, or 180o turnaround duct, is designed to highlight the
model performance when streamlines are strongly curved. The U-bend simulations
match the experimental geometry and conditions of Monson et al. (1990). The radius of
the turn (at the channel centerline) is equal to the channel height, H. The computational
domain is shown in Figure 12. The Reynolds number based on the mean velocity and the
channel height was ReH ¼ 106. Inlet conditions in the numerical simulations were
prescribed to match the experimental profiles for mean streamwise velocity and
turbulent kinetic energy at s/H ¼ 0, and these profiles are shown in Figure 13. Note that y
is the wall-normal direction and is always measured from the inside surface to the outside
surface. In addition to the new model, results were obtained for the SKE and RKE models.

Figure 14 shows flow development in the bend section at � ¼ 90o (halfway through
the bend) in terms of the streamwise velocity and the turbulent kinetic energy profiles,
both normalized by the average velocity across the channel. Observing the profiles for
turbulent kinetic energy first, the experiments show a significant increase in k near the
outer surface ( y/H ¼ 1) and a decrease in k near the inner surface (y/H ¼ 0). This is
because the concave curvature has a destabilizing effect on turbulence, while the convex
curvature has a stabilizing effect. The behavior in response to the streamline curvature
along the outer and inner walls is analogous to the response on the pressure and suction
surfaces, respectively, for the rotating channel case discussed above. The SKE model
shows no sensitivity to the curvature, with a nearly symmetric profile for k, while the

Figure 12.
Computational domain for
two-dimensional U-bend
simulation

Figure 13.
Profiles of normalized
velocity and turbulent
kinetic energy at the inlet
of the computational
domain indicating a good
match of the experimental
conditions
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RKE model shows only a slight response. Only the new model qualitatively predicts the
profile for k, correctly matching the shape and location of the peak near the outer surface.
The elevated turbulence has an impact on the mean flow near the outside wall, and only
the new model predicts a full profile for U that matches the measured data.

Figure 15 shows the profiles for normalized U and k at � ¼ 180o, the exit to the
U-bend section. Experiments indicate a flow separation zone, with a negative streamwise
velocity component, near the inside surface. The SKE model predicts excess turbulence
near y/H ¼ 0, despite the natural tendency of the convex curvature to reduce k. Because
of the excess momentum transport due to artificially high levels of k here, SKE indicates
almost no separation at all. The RKE model shows a very slight separation. The new
model correctly predicts separation and is closest to the measured values. A large peak in

Figure 15.
Profiles of velocity and

turbulent kinetic energy
at � ¼ 180o (end of

U-bend section)

Figure 14.
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k near the inside wall corresponds to the location of the shear layer between the
recirculation zone and the high-speed flow above it. The new model alone predicts the
location of the peak, although all models underpredict the magnitude. It is believed that
this is largely due to the presence of unsteady effects in the experiment that are not
resolved in the steady-state measurements, a mechanism not studied herein.

In Figures 16 and 17, predictions are presented for the skin friction coefficient for
the inner and outer walls, respectively. The location of the curved section is between
s/H ¼ 4 and s/H ¼ (4 þ �), denoted by the dashed lines in the plots. The new model
indicates a lower value for Cf on the inner wall in the bend, and this is in better
agreement with the experiment than the other two models. This is an effect of the new

Figure 17.
Distribution of the skin
friction coefficient on
outer wall of the U-bend

Figure 16.
Distribution of the skin
friction coefficient on
inner wall of the U-bend



Linear
eddy-viscosity

formulation

763

model correctly predicting a decrease in turbulence along the inner, convex wall, which
tends to reduce the wall shear stress. The opposite trend should be seen on the outer, or
concave, wall, and indeed the new model predicts a higher skin friction in and after the
bend, which is in line with the measurements. The new model does slightly overpredict
the friction well downstream of the bend (beyond s/H ¼ 10), however this is believed to
be primarily a function of separation zone behavior and not an indicator of the model’s
curvature sensitivity.

Turbine vane conjugate heat transfer
A conjugate heat transfer simulation of an internally cooled gas turbine vane at engine-
realistic conditions was conducted to provide a complex, realistic problem on which to
test the robustness of new turbulence model. The conjugate approach involves a single
simulation in which the heat transfer modes (external convection, diffusion in the solid
and internal convection) are fully coupled. York and Leylek (2003) provide further
discussion of the conjugate heat transfer approach and the gas turbine vane simulation. It
is expected that curvature effects on the turbulence (and therefore heat transfer) are
important, especially on the suction surface with its strong convex curvature. Matching
the experimental conditions of Hylton et al. (1983), the geometry was a ‘‘C3X’’ vane, made
of stainless steel 310, in a linear cascade arrangement. A combustor supplied hot air at
To ¼ 796 K for the main flow, and the vane was cooled by air at Tc ¼ 300 K flowing
radially through ten round channels in the part. A view of the computational domain is
given in Figure 18. The Reynolds number based on true chord and conditions at the
trailing edge plane was Rec ¼ 1.9 � 106. The maximum Mach number in the vane
passage was approximately 0.9. In the numerical simulation, fluid properties and the vane
thermal conductivity were taken to be second-order polynomial functions of temperature.
Aview of the computational mesh on the midspan plane is shown in Figure 19.

Figure 20 shows contours of the turbulence level (defined based on the average velocity
at the inlet) on the midspan plane near the very strong curvature of the suction surface for
the RKE model and the new model. Very near the wall, the RKE model predicts turbulence
levels in the freestream in excess of 30 percent. This response reflects the so-called
‘‘stagnation point anomaly’’ in which eddy-viscosity turbulence models show an
overprediction of turbulence in rapidly strained regions of the freestream flow (Durbin,
1996). Through the modified eddy-viscosity coefficient, the new model responds to the
irrotational strain rate in a more realistic manner, indicating that the freestream turbulence
production is minimal, and the majority of turbulence production predicted to be within
the boundary layer. While not clearly visible in the contours, the new model also predicts
decreased levels of turbulence in the boundary layer that is developing on the convex
airfoil surface. It is expected that the stabilizing effect of convex curvature should decrease
the heat transfer coefficient in this region. Indeed this is the case, as seen in Figure 21,
showing predicted Stanton number (based on average conditions at the trailing edge
plane) distributions at midspan for the two turbulence models. Because the new model
was calibrated to behave as a realizable k-1 when no flow rotation (curvature) is present, it
should be no surprise that predicted Stanton number is comparable everywhere except the
strong convex curvature portion of the suction surface. The new model does predict a
small increase in heat transfer, a result of turbulence augmentation, on the leading two-
thirds of the pressure surface, which is characterized by mild concave curvature.

The predictions of normalized static temperature (u) distribution on the vane
external surface at the midspan are plotted in Figure 22, along with the measured data
of Hylton et al. (1983). This temperature depends directly on the local heat transfer
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coefficient. The SKE model results are included in this plot, and the predictions with
this model are significantly higher than the measurements over the entire surface. York
and Leylek (2003) explained that this is primarily due to the spurious production of
turbulent kinetic energy near the airfoil leading edge and in the passage exhibited by
the standard model. The RKE model produces reasonably good results for wall
temperature over the vane surface, with the exception of the strong curvature portion
of the suction surface. The overprediction in temperature by the RKE model
corresponds to the location of the peak in the Stanton number on the suction surface.
The new curvature-corrected model addresses this shortcoming of the other k-1
models. Due to lower predicted heat transfer coefficients on the suction surface where
convex curvature is the strongest (near s/Lss ¼ 0.2), the surface temperature curve
with the new model falls close to the level of the experimental data in this region.

Summary and conclusions
This paper presents a new eddy-viscosity formulation that was developed to include
appropriate sensitivity to streamline curvature and rotation effects in linear two-
equation turbulence models. The influence of rotation and curvature has been included
based on invariance arguments and physical interpretation of the influence of flow

Figure 18.
Diagram of the
computational domain
with a cross-sectional
view of the vane
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rotation rate on turbulence production. The eddy-viscosity model was designed for
economic, effective use on any complex flow problem and with unstructured, multi-
topology meshes. To this end, second derivatives of the velocity field were eliminated
in the flow rotation numerical definition. The exact calculation of local flow rotation
has been replaced with an approximation expressed solely in terms of the strain-rate

Figure 19.
View of the computational
mesh for the C3X turbine

vane conjugate heat
transfer simulation

Figure 20.
Contours of turbulence

level (based on inlet
velocity) near the suction

surface on the midspan
plane of the C3X vane

conjugate heat transfer
simulation using (a) RKE

model and (b) the new
model
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Figure 21.
Stanton number
distribution on the C3X
vane at the midspan
predicted by the RKE
model and the new model

Figure 22.
Vane external surface
temperature (normalized)
at midspan for the
conjugate heat transfer
turbine vane simulation
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magnitude and the rotation-rate magnitude obtained in an inertial frame of reference.
The resulting formulation for eddy viscosity is simple and robust, and satisfies
principles of frame invariance and realizability.

The new eddy-viscosity formulation was implemented into a standard k-1 model
form. A robust two-layer type of near-wall model with dynamic length scale limiting
was included for integration to the wall, although the high-Reynolds number model
form can also be used in conjunction with a wall-function approach, or damping
functions may be used in low-Re versions of either k-1 or k-v models.

The new turbulence model was tested on several problems for which measured or
DNS data were available for validation, and results were also compared to the standard
k-1 and realizable k-1 models. For rotating homogeneous turbulence, the new model
showed the appropriate attenuation and augmentation of turbulence production for the
cases of stabilizing and destabilizing rotation, respectively. For fully developed channel
flow, the new model gave excellent predictions for the velocity profiles across the
channel, which become more skewed as the rotational speed increases, and
qualitatively correct trends in the turbulent kinetic energy predictions. For two-
dimensional flow in a U-bend, the new model exhibited the correct response to the
curvature, with turbulence augmentation on the concave wall and attenuation on the
convex wall. Predictions with the new model for both velocity and turbulence profiles
in the bend were much closer than those measured with the SKE or RKE models.
Finally, a three-dimensional gas turbine vane aerothermal problem was intended to
serve as a stringent, industry-relevant test case with complex geometry and a large,
multi-topology mesh. The new model showed reduced levels of turbulence near the
vane suction surface where convex curvature was strongest as compared to the RKE
model. This resulted in lower heat transfer coefficients and surface temperature in this
region, which were in much better agreement with the measured values.

Results for all of the test cases indicate the new model shows a qualitatively correct
response to flow rotation and streamline curvature. Due to its simplicity, it is expected
that the new model can offer a useful alternative to more complex modeling approaches
(differential and algebraic Reynolds-stress models, non-linear two-equation models),
particularly since the new eddy-viscosity formulation can be implemented as a
‘‘plug-in’’ to existing linear eddy-viscosity models. Retaining the economy of k-1 variant
models and exhibiting efficient, trouble-free convergence for problems of varying
complexity, the new eddy-viscosity model offers promise as a robust and efficient tool
for use in a design environment.
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Appendix: New model equations
The equations for the new curvature-sensitive turbulence model are listed below in their
generalized, compressible form. The model is a two-equation k-1 model, and the curvature/
rotation effects enter through the algebraic expression for the eddy-viscosity. The eddy-viscosity
formulation is also designed to satisfy the realizability constraint for the turbulent stresses. The
‘‘high-Reynolds number’’ model form is coupled with a dynamic two-layer near-wall model for
integration down to the wall.



HFF
19,6

770

Turbulent kinetic energy transport equation
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Turbulence dissipation rate transport equation
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Turbulent viscosity definition
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Turbulent stresses (Boussinesq’s assumption)
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Model turbulence length scale
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Near-wall turbulence dissipation rate
The following equations are used only when CLy is the minimum length scale in Equation (A.10).
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Near-wall turbulent viscosity
The following equation is used only when CLy is the minimum length scale in Equation (A.10):
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Model constants
Constants in new turbulence model are given in Table AI.

Detailed derivation of model equations
The development of Equations (13), (15) and (19) in the text are outlined here in more detail. The
starting point for the new eddy-viscosity formulation is the explicit algebraic stress formulation
of Gatski and Speziale (1993), who derived an expression for the Reynolds-stress anisotropy
tensor (Equation (4)). This equation is first linearized with respect to the mean strain-rate tensor
to yield:

bij ¼
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3
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Incorporating the definition of the normalized strain-rate S�ij (Equation (7)), this may be
expressed:
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The anisotropy tensor definition for a linear eddy-viscosity model (Equation (2)) may be

expressed as:
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and incorporating the definition of the eddy viscosity (Equation (3)) with a damping function of

unity (fm ¼ 1) yields:

bij ¼ �2Cm

k

1
Sij: ðA:19Þ

Equations (A.17) and (A.19) are combined to yield:

Cm ¼
3

4

3
� C2

� �
6� 4h2 þ 12z2
	 
 � g: ðA:20Þ

Finally, substitution of the definition of g (Equation (10)) yields the form expressed in Equation

Table AI.
Constants in new
turbulence model

Prk 1.0
Pr1 1.19
C11 1.44
C12 1.92
K1 0.66
K2 3.9
K3 1.0
K4 5.3
K5 2.9
K6 17.0
K7 10.0
K8 3.84
C4 0.4
CL 2.495
A1 4.99
Am 25.0
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(13):

Cm ¼
4� 3C2ð Þ

6� 4h2 þ 12z2
	 
 C1

2
� 1

� �
þ Pk

1

� � : ð13Þ

The relation expressed in Equation (13) is next manipulated to develop the implicit expression
for eddy viscosity proposed here (Equation (15)). First, the definitions of h2 and z2 may be
expressed in terms of the (non-normalized) strain-rate magnitude (S) and modified rotation-rate
magnitude (W):

h2 ¼ 2� C3ð Þ2

8
� g2 � k

2

12
� S2 ðA:21Þ

z2 ¼ 2� C4ð Þ2

8
� g2 � k

2

12
�W 2: ðA:22Þ

Substitution into Equation (A.20) yields:

Cm ¼
3

4

3
� C2

� �
� g

6� 1

2
2� C3ð Þ2� g2 � Sk

1

� �2

þ 3

2
2� C4ð Þ2� g2 � Wk

1

� �2
" # ðA:23Þ

which may be rearranged to:

6

g2
� Cm �

1

2
2� C3ð Þ2� Sk

1

� �2

� Cm þ
3

2
2� C4ð Þ2� Wk

1

� �2

� Cm ¼
3

g

4

3
� C2

� �
: ðA:24Þ

The pressure strain model on which this formulation is based (Speziale et al., 1991)
uses a form of the coefficient C1 that is linear with respect to the production-to-dissipation
ratio, i.e.

C1 ¼ C1a þ C1b
Pk

1
; ðA:25Þ

in which case g (Equation (10)) can be expressed:

g ¼ 1

2
C1a � 1

� �
þ 1

2
C1b þ 1

� �
Pk

1

� ��1

: ðA:26Þ

The pressure strain model similarly uses a form of the coefficient C2 of the form:

C2 ¼ C2a � C2b

ffiffiffiffiffiffiffiffiffi
bijbij

q
: ðA:27Þ

For the linear model form used here summarized by Equations (2) and (3), the coefficient is
equivalently expressed:

C2 ¼ C2a � C2b

1ffiffiffi
2
p � Cm

Sk

1

� �
: ðA:28Þ
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Substitution of Equations (A.26) and (A.28) into Equation (A.24) yields:

6
1

2
C1a � 1

� �2

� Cm þ 12
1

2
C1a � 1

� �
1

2
C1b þ 1

� �
� P

k

1
� Cm

þ 6
1

2
C1b þ 1

� �2

� Pk

1

� �2

� Cm �
1

2
2� C3ð Þ2� Sk

1

� �2

� Cm þ
1

2
2� C4ð Þ2� Wk

1

� �2

� Cm

¼ 3
4

3
� C2a

� �
1

2
C1a � 1

� �
þ 3ffiffiffi

2
p C2b

1

2
C1a � 1

� �
� Sk

1

� �
� Cm

þ 3
4

3
� C2a

� �
1

2
C1b þ 1

� �
� P

k

1
þ 3ffiffiffi

2
p C2b

1

2
C1b þ 1

� �
� P

k

1
� Sk

1

� �
� Cm

ðA:29Þ

The turbulence production-to-dissipation ratio may be expressed in terms of the turbulent viscosity

coefficient and the dimensionless strain-rate magnitude (Equation (14)). Substitution yields:

6
1

2
C1a � 1

� �2

� Cm þ 12
1

2
C1a � 1

� �
1

2
C1b þ 1

� �
� C2

m �
Sk

1

� �2

þ 6
1

2
C1b þ 1

� �2

� C3
m �

Sk

1

� �4

� 1

2
2� C3ð Þ2� Sk

1

� �2

� Cm þ
1

2
2� C4ð Þ2 � Wk

1

� �2

� Cm

¼ 3
4

3
� C2a

� �
1

2
C1a � 1

� �
þ 3ffiffiffi

2
p C2b

1

2
C1a � 1

� �
� Sk

1

� �
� Cm

þ 3
4

3
� C2a

� �
1

2
C1b þ 1

� �
� Cm �

Sk

1

� �2

þ 3ffiffiffi
2
p C2b

1

2
C1b þ 1

� �
� C2

m �
Sk

1

� �3

ðA:30Þ

To obtain the implicit form for Cm, the sole negative term in Equation (A.30) is removed by adding

1
2

2� C3ð Þ2� Sk
1

� �2

�Cm to both sides, so that it may be equivalently expressed:

6
1

2
C1a � 1

� �2

þ 12
1

2
C1a � 1

� �
1

2
C1bþ 1

� �
�Cm �

Sk

1

� �2
"

þ6
1

2
C1b þ 1

� �2

� C2
m �

Sk

1

� �4

þ1

2
2�C4ð Þ2� Wk

1

� �2
#
�Cm

¼ 3
4

3
�C2a

� �
1

2
C1a � 1

� �
þ 3ffiffiffi

2
p C2b

1

2
C1a � 1

� �
� Sk

1

� �
�Cmþ

1

2
2�C3ð Þ2� Sk

1

� �2

� Cm

þ 3
4

3
�C2a

� �
1

2
C1b þ 1

� �
�Cm �

Sk

1

� �2

þ 3ffiffiffi
2
p C2b

1

2
C1b þ 1

� �
�C2

m �
Sk

1

� �3

ðA:31Þ

Finally, the bracketed expression on the left-hand side of Equation (A.31) is divided through to yield

the expression for Cm:
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Cm ¼
K1þK2Cm

Sk

1

� �2

þK3Cm

Sk

1

� �
þK4C2

m

Sk

1

� �3

K5 þK6Cm

Sk

1

� �2

þK7C2
m

Sk

1

� �4

þK8
Wk

1

� �2
ð15Þ

where, for example, the constant K1 is expressed in terms of the original model constants as:

K1 ¼ 3
4

3
�C2a

� �
1

2
C1a � 1

� �
: ðA:32Þ

As discussed in the text, the flow rotation rate used to incorporate rotational/curvature effects in to
the model is obtained approximately, by consideration of the special case of a two-dimensional shear
layer rotating with angular velocity vm. For such a case, the velocity gradient tensor expressed in a
frame with rotation ratevm is:

@Ui

@xj

¼ 0 S
0 0

� �
; ðA:33Þ

and the strain-rate and rotation-rate tensors (in the rotating frame) are:

Sij ¼
0 S=2

S=2 0

� �
ðA:34Þ

�0ij ¼
0 S=2

S=2 0

� �
: ðA:35Þ

In an inertial frame, the rotation-rate tensor is expressed:

�ij ¼
0 S=2�vm

�S2þvm 0

� �
: ð16Þ

A flow rotation rate of vm ¼ S
2 implies the limiting case of irrotational flow, occurring for example in

an ideal vortex. For rotation rates less than or equal to this value, representative of a rotating shear
layer, the flow rotation rate vm may be computed as a function of the strain rate and rotation rate
expressed in an inertial frame. It is apparent that the rotation-rate magnitude (in an inertial frame) is
equal to:

��
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2�ij�ij

p
¼ S� 2vm: ðA:36Þ

This expression is rearranged to yield the flow rotation rate in terms of the strain-rate magnitude and
the inertial frame rotation-rate magnitude:

vm ¼
1

2
� S��ð Þ: ðA:37Þ



HFF
19,6

776

Substituting this into the expression for the modified rotation-rate tensor used to compute Cm

(Equation (9)) yields:

W12 ¼�W21 ¼
S

2
� C4 � 4ð Þ

C4 � 2ð Þ �
1

2
� S��ð Þ: ðA:38Þ

The modified rotation-rate magnitude (W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2WijWij

p
) is then computed to be

W ¼ S � 1�C4� 4

C4� 2

� �
þ� � C4� 4

C4� 2

� �����
����¼ 9

4
�� 5

4
S

����
����: ð19Þ

As discussed above, this formulation is frame indifferent, and provides an approximation of the flow
rotation rate, defined as the Lagrangian rate of rotation of the principal axes of the strain-rate tensor.
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